خورشید و فیزیک


خورشید عامل و منشاء انرژی‌های گوناگونی است که در طبیعت موجود است از جمله: سوخت‌های فسیلی که در اعماق زمین ذخیره شده‌اند، انرژی آبشارها و باد، نمو گیاهان که حیوانات و انسان برای رشد خود از آلفا استفاده می‌کنند، کلیه مواد آلی که قابل تبدیل به انرژی حرارتی و مکانیکی هستند، امواج دریاها، قدرت جزر و مد که بر اساس جاذبه و حرکت زمین به دور خورشید و ماه حاصل می‌شود، اینها همه نمادهائی از انژی خورشیدی هستند. وابستگی شدید جوامع صنعتی به منابع انرژی بخصوص سوختهای نفتی و بکارگیری و مصرف بی‌رویه آنها منابع عظیمی را که طی قرون متمادی در لایه‌های زمین تشکیل شده بود تخلیه می‌نماید با توجه به اینکه منابع زیرزمینی انرژی باد سرعت فوق‌العاده‌ای مصرف می‌شوند و در آینده‌ای نه چندان دور چیزی از آنها باقی نخواهد ماند نسل فعلی وظیفه دارد به آن دسته از منابع انرژی که دارای عمر و توان زیاد است روی آورد و دانش خود را برای بهره‌برداری از آنها گسترش دهد.

خورشید یکی از دو منبع مهم انرژی است که باید به آن روی آورد که در ضمن به تکنولوژی پیشرفته و پرخرج نیز نیاز نداشته و می‌تواند به عنوان یک منبع مفید و تامین کننده انرژی در اکثر نقاط جهان بکار گرفته شود به علاوه استفاده از آن انرژی هسته‌ای، خطر و اثرات نامطلوبی از خود باقی نمی‌گذارد و برای کشورهائی که فاقد منابع زیرزمینی هستند مناسبترین راه برای دسترسی به نیرو و رشد و توسعه اقتصاد می‌باشد.






  شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ما قبل تاریخ باز می‌گردد. مهمترین روایتی که در رابطه با استفاده از تابش خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشند که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید. گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی پایه متحرک قرار داشت اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده است. به همین علت از ارشمیدس به عنوان بنیانگذار استفاده از تابش خورشید نام می‌برند در حالیکه منابع مصری قدیمیتر از آن است.

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف و برای مقاصد متفاوت استفاده و بهره‌گیری می‌شود که عبارتند از:

1)       سیستم‌های فتوبیولوژیک: تغییراتی که در حیات و زیست گیاهان و جانداران به وسیله نور خورشید و فتوسنتز ایجاد می‌گردد فرآیند کود حیوانات و استفاده از گاز آن.

2)    سیستم‌های فتوشیمیایی: تغییرات شیمیایی در اثر نور خورشید – الکترولیزرهای نوری – سلولهای فتوولتاژئیک الکتروشیمی – تاسیسات تهیه هیدروژن.

3)       سیستم‌های فتو ولتائیک: تبدیل انرژی خورشیدی به انرژی الکتریکی – سلولهای خورشیدی

4)    سیستمهای حرارتی و برودتی: شامل سیستمهای تهیه آب گرم -   گرمایش و سرمایش ساختمانها – تهیه آب شیرین – سیستمهای انتقال و پمپاژ – سیستمهای تولید فضای سبز (گلخانه‌ها) – خشک‌کنها و اجاقهای خورشیدی – سیستمهای سردسازی – برجهای نیرو – خشک‌کن خورشیدی.

در مورد پیدایش خورشید فرضیه‌ای که بیشتر مورد قبول واقع شده، این است که منشاء ایجاد خورشید توده‌ای ابری شکل گازهائی هستند که تشکیل دهنده عمده آنها هیدروژن بوده است. در مرحله اول و در نتیجه نیروی جاذبه مرکزی، ذرات هیدروژن روی هم متراکم شده و در اثر تراکم، تصادم شدیدی بین ذرات هیدروژن بوجود آمده و در نتیجه افزایش بیش از حد فشار و دما، تحولات هسته‌ای پدید آمده و حاصل آن آزاد شدن منابع عظیم انرژی بوده است از مجموع انرژی تابشی خورشید که بوسیله زمین و جو آن دریافت می‌شود در حدود 35 درصد آن مجدداً به فضای خارج از جو بازتاب می‌گردد. قسمت اعظم این بازتابی در جو زمین در برخورد اشعه با ابرها و غبارهای جوی انجام می‌گیرد و بخش کمتری از آن، در سطح زمین در نتیجه انعکاس اشعه بوسیله آبها – برفها و سنگریزه‌ها حادث می‌شود.

قسمتی از باقیمانده انرژی، در حین عبور از جو زمین، در اثر برخورد با ذرات هوا و غبار و بخار آب موجود در جو، به دفعات زیاد تغییر مسیر داده و پس از این برخوردها، به صورت تشعشعات پراکنده به سطح زمین و یا فضای خارج تابیده می‌شود. همچنین در حدود 10 الی 15 درصد انرژی تشعشعی دریافت شده از خورشید، به وسیله ذرات بخار آّب – کربن دی‌اکسید و ازون موجود در جو زمین جذب می‌شود.

  قابل توجه است که در طبقات فوقانی جو زمین، گاز ازون تقریباً تمام اشعه ماوراء‌بنفش را جذب می‌کند و این تصفیه اشعه از نظر سلامت زندگی انسانها حائز اهمیت فوق‌العاده ایست زیرا که اشعه ماوراء بنفش در پوست و چشم انسان تأثیرات بسیار نامطلوب دارد. بخار آب و کربن دی‌اکسید در طبقات تحتانی جو زمین، اشعه مادون قرمز را جذب می‌کند.

1)       سیستم‌های فتوبیولوژی:

عملکرد فتوسنتز در گیاهان قدیمی‌ترین روشها استفاده از انرژی خورشیدی است گیاهان انرژی خورشید را جذب کرده و با کمک آن گاز کربنیک و آب را به مواد قندی تبدیل می‌کنند. همچنین در این فعل و انفعالات گیاهان اکسیژن را آزاد و نیتروژن و مواد فسفری را که برای ادامه حیات و رشد خود لازم دارند جذب می‌کنند. نتیجه این فرآیند، ذخیره‌سازی بیولوژیکی انرژی خورشیدی می‌باشد انرژی ذخیره شده در گیاهان از طریق سوزاندن چوب و یا تهیه سوختهائی از قبیل الکل و متان بازیابی می‌شود.

2)       سیستم‌های شیمی خورشیدی:

این سیستم‌ها به دو دسته کلی تقسیم می‌شوند.

الف) سیستم‌های فتوشیمیائی که در آنها از نور خورشید در عملیات شیمیایی استفاده می‌شود.

ب) سیستم‌های هلیوترمیک در آنها از حرارت خورشید به عنوان یک منبع حرارتی بهره‌گیری شده و عملیات شیمیایی انجام می‌گیرد. برای تهیه سوختی مثل هیدروژن از روش فتوشیمیایی و یا از روش حرارتی در الکترولیز استفاده می‌شود و هیدروژن ذخیره شده را برای تولید انرژی مکانیکی – حرارتی و الکتریکی و غیره بکار برد.

عملیات فتوسنتز در گیاهان و تشکیل سوختهای فسیلی در زیرزمین، و ذخیره‌سازی بیولوژیکی انرژی خورشید در موارد و بالاخره تهیه سوختهائی از قبیل الکل و متان و هیدروژن، همگی تابع یک سری فعل و انفعالات شیمیایی بوده و می‌توان آنها را بخشی از سیستم‌های شیمی خورشیدی به حساب آورد.

  در سالهای 1969 دو پژوهشگر ژاپنی نتیجه تحقیقات خود را به عنوان رشته جدیدی از سلول‌های الکترولیز اعلام کردند این دو پژوهشگر یک صفحه تیتانیوم دی‌اکسید ( Tio ) جریان الکتریکی بین دو قطب کاتدوآند برقرار شده و آب نیز به دو عنصر تشکیل دهنده خود یعنی اکسیژن و هیدروژن استفاده کرد. تهیه الکتریسته با استفاده از سلولهای خورشیدی در رشته شیمی نیز استفاده از الکترولیز امکان‌پذیر بوده به علاوه از سلولهای فتوالکترولیت، برای تجزیه شیمیایی و تهیه و ذخیره هیدروژن با روشهای گوناگون استفاده می‌شود.

3)    سیستم‌های فتو ولتائیک: سیستمی که در آن انرژی خورشیدی بدون بهره‌گیری از مکانیزم‌های متحرک و شیمیایی به انرژی الکتریکی تبدیل شود، اثر آن را فتو ولتائیک می‌نامند. عاملی که در این فرآیند بکار می‌رود سلول خورشیدی نامیده می‌شود. حدود 35 سال پیش برای اولین بار و به عنوان مولد الکتریکی در سفینه‌های فضائی از این سلول‌ها استفاده گردید و مدتی است که بهره‌گیری از آنها در زمین نیز تداول شده است سلول‌های خورشیدی قادرند انرژی خورشیدی را بازدهی معادل 5 تا 20 درصد مستقیماً به الکتریسته تبدیل کنند. اگر چه انرژی الکتریکی نوری هنوز به میزان کافی از لحاظ اقتصادی مقرون به صرفه نمی‌باشد ولی در سالهای اخیر کاهش چشمگیری در هزینه‌های مربوط به بهره‌برداری از این سیستم‌ها مشاهده گردیده و انتظار می‌رود در آینده نیز با تحقیقات لازم در نوع سلولهای نوری، کاهش قیمت ادامه یابد ولی نباید فراموش کرد در مناطق دور و در جاهائی که دسترسی به سوخت و الکتریسته ارزان مقدور نباشد از سیستم‌های فتو ولتائیک استفاده می‌شود. با استفاده از انرژی خورشید و سلول‌های خورشیدی و با ایجاد اختلاف پتانسیل فشار الکتریکی در نیمه‌ هادئی که بطور مناسب ساخته شده‌اند الکتریسته تولید می‌شود. امروزه مؤثرترین و ارزانترین سلولهای خورشیدی ماده‌ای به نام سیلیسیم می‌باشد. ماسه یکی از منابع مهم سیلیسیم بوده که پس از پالایش آن کریستالهای سیلیسیم بدست می‌آید و پس از بریده شدن بصورت صفحه آماده می‌شود.

سیسلیسیم یک نیمه هادی است که به طور خالص از نظر هدایت الکتریکی هادی ضعیفی است ولی اگر در موقع پالایش به آن فسفر اضافه شود بار منفی (الکترون) پیدا کرده و در صورتیکه بود اضافه شود بار مثبت (حفره) پیدا می‌کند. نوع اول را سیلیسیم «نوع N » و نوع دوم را سیلیسیم «نوع P » می‌نامند می‌دانیم که سیلیسیم دارای 4 الکترون در مدار خارجی خود می‌باشد. هنگامی که تعدادی اتم فسفر به داخل کریستال سیلیسیم وارد شود با توجه به اینکه فسفر دارای 5 الکترون در مدار خارجی خود دارد 4 الکترون مدار خارجی فسفر با 4 الکترون مدار خارجی فسفر با 4 الکترون مدار خارجی سیلیسیم یک مدار بوجود آورده و به این ترتیب یک الکترون به صورت آزاد باقی مانده یعنی سیلیسیم با بار منفی باردار شده و نیمه‌هادی نوع N بوجود می‌آید. از طرفی اگر بجای فسفر از اتم بور که سه الکترون در مدار خارجی دارد استفاده شود حفره‌هائی که مثل الکترون قابلیت حرکت دارند ایجاد شده و سیلیسیم بطور مثبت باردار می‌شود یعنی نیمه‌هادی نوع P بوجود می‌آید. حال اگر یک طرف یک سیلیسیم نوع P را از نوع N الکترونهای آزاد و اتم‌های فسفر با بار مثبت وجود دارند. حال اگر یک فوتون (ذره‌ای از نور) به اتصال P-N برخورد کند. الکترون از اتم سیلیسیم جدا کرده و در نتیجه حفره بوجود آورد. حفره‌های مزبور تحت تأثیر میدان موجود به سمت ناحیه P و الکترون به سوی ناحیه N حرکت کرده و این دو حرکت مخالف با بارهای مختلف، یک جریان الکتریکی بوجود می‌آورند. با اتصال کنتاکتهائی به رویه‌هائی قطعات نیمه هادی، مداری تشکیل می‌شود که اجازه برگشت الکترون‌ها را به اتصال نوع ‌ P از میان یک بار خارجی می‌دهد.

4)       سیستم‌های حرارتی خورشیدی ( THERMAL SOLAR ENERGY )

روش‌های گرما خورشیدی، با استفاده از انواع کلکتورها و روش‌های غیرفعال، جهت جذب کردن و جمع‌آوری انرژی حرارتی خورشید طراحی شده، و برای منظورهائی از قبیل گرم کردن آب و هوا و تولید بخار و سرد کردن و... بکار برده شده‌اند.

سیستم‌های گرما خورشیدی را می‌توان به ترتیب زیر طبقه‌بندی کرد:

1) سیستم‌های آب گرم خورشیدی                             2) سیستم‌های گرمایش و سرمایش ساختمانها

3) سیستم‌های تهیه آب شیرین و آب مقطرگیری                         4) سیستم‌های انتقال پمپاژ

5) سیستم‌های تولید فضای سبز                                            6) سیستم‌های خشک‌کنن و خوراک پز خورشیدی

7) سیستم‌های سرد کننده خورشیدی                                    8) برجهای نیرو نیروگاههای خورشیدی

 

 

منابع:

1)    کتاب راهنمای طرحهای انرژی خورشیدی در ایران، اصغر حاجی سقطی، استادیار دانشگاه علم و صنعت ایران، چاپ اول مهر 1370، انتشارات دانشگاه علم و صنعت ایران

2)       نگرشی بر سیستم‌های استفاده از انرژی خورشیدی نویسنده دکتر مجید رئوفی راد

3)       اصول کاربردی حرارتی انرژی خورشیدی ترجمه و تألیف دکتر محمد علی عبدنی

4)       مهندسی گرما و خورشیدی، تألیف پیتر.جی.لاند ترجمه دکتر حسین پناهنده

نانو فیزیک

نانو فیزیک

نانو فیزیکاصولاً اتصالات نیم رسانا - فلز جزو لازمه تمامی قطعات الکترونیکی اند. چگونگی و رفتار اتصالات الکتریکی به غلظت سطح نیم رسانا (Si) ، تمیزی سطح و واکنش های بین فصل مشترک فلز - نیم رسانا بستگی دارد. بعد از ابداع ترانزیستور توسط جان باردین ، مفهوم و اهمیت مدارهای مجتمع روشن شد.
پس از آن موفقیت بزرگ تجمع و اتصال تعداد بسیار زیادی از قطعات کوچک و اجزای الکترونیکی بر سطح زیر لایه تحول عظیمی در ساخت عملی مدارهای مجتمع بوجود آورد. با ابداع و رشد فناوری مینیاتور کردن قطعات الکترونیکی بشر به یکی از مهمترین دستاوردهای خود در قرن گذشته نائل آمد.
● سیر تکاملی و رشد:
با گسترش ، طراحی و ساخت مدارهای مجتمع به ویژه افزایش انباشت قطعات در مقیاس خیلی بزرگ در دهه ۱۹۸۰ تلاش برای کوچکتر کردن قطعات میکرو الکترونیکی ادامه یافت. از طرف دیگر تقاضای جدید برای ساخت مدارهای مجتمع به ویژه مدارهای حافظه شامل حافظه دینامیکی (DRAM) و حافظه استاتیکی (SRAM) با ویژگی هایی نظیر سرعت عمل بالا توأم با کاهش اتلاف توان روزبه روز بیشتر شد.
در روند تکاملی فناوری فرامینیاتور کردن قطعات الکترونیکی بویژه در هندسه و مقیاس زیر میکرونی کمتر از ۰.۲ میکرو متر یعنی حوزه فناوری طراحی قطعات نانو الکترونی و فناوری ساخت مدارهای مجتمع از پیچیدگی خاصی برخوردار است.
بطور متوسط در هر شش سال ابعاد و اندازه قطعات الکترونیکی به نصف تقلیل یافته است.
امروزه با استفاده از مزیت های مجتمع سازی کوچکی قطعات ، بطور مشخص فناوری نانو الکترونیک ساختار این گونه مدارهای مجتمع گسترده تر و پیچیده تر است. بطوری که این مدارها از ده ها میلیون ترانزیستور ، دیود ، مقاومت الکتریکی و خازن تشکیل شده است.
عرض خطوط اتصالات بین قطعات مختلف در سال ۲۰۰۰ میلادی ۰.۱۸ میکرومتر بود، که کاهش آن همچنان ادامه دارد. در راستای پیشرفت این فناوری ، در همین سال مجموع فروش مدارهای مجتمع در دنیا حدود ۱۵۰ میلیارد دلار بر آورد شده است. به این دلیل پیچیدگی و ویژگیهای خاص مدارهای مجتمع با ساختار نانومتری بکار گیری مواد جدید و ‏فرآیند های بهتر تولید و همچنین استفاده روشهای دقیقتر ساخت.
● مشخصه یابی لایه نازک قطعات الکترونیکی:
مشخصه یابی لایه نازک قطعات مختلف امری الزامی است. بعضی از فرایندهای مهم ساخت مدارهای مجتمع عبارت اند از:
▪ نفوذ کاشت یونی
▪ لیتوگرافی
▪ فلز نشانی
▪ غیر فعال سازی و غیره
که در فناوری نانو الکترونیک برای انجام این گونه فرآیند ها باید از پارامترها و سیستمهای خاص استفاده کرد. مثلاً در فرایند فلز نشانی استفاده از فلز مس به جای فلز رایج آلومینیوم برای اتصالات درونی بین قطعات مختلف عملی اجتناب ناپذیر است.
اما نفوذ سریع اتمهای Cu در زیر Si در عملیات حرارتی منجر به تشکیل لایه سلیساید مس و در نهایت سبب تخریب قطعه الکترونیکی می شود. برای رفع این مشکل معمولاً از یک لایه میانی از مواد دیرگذار مانند Ta و w یا Mo به عنوان سد نفوذی برای بهبود پایداری حرارتی لایه Cu / Si استفاده می کنند.
● ساخت و مشخصه یابی سیستم های چند لایه ای:
مشخصه یابی سیستم های چند لایه ای Cu / Ta /Si اخیراً مورد مطالعه قرار گرفته است. در این زمینه تاثیر ولتاژ بایاس منفی بر بهبود خواص الکتریکی و ساختاری سد نفوذی لایه اسپاترنیگ Ta در سیستم Ta/Si گزارش شده است.
همچنین در فناوری طراحی قطعات نانو الکترونی با استفاده ار میکروسکوب نیروی اتمی (AFM) و ساخت لایه های نازک مورد نیاز در مدارهای مجتمع مذکور فقط در محیط های تعریف شده توسط روش های دقیق لایه نشانی نظیر لایه نشانی با باریکه مولکولی (MBE) و لایه نشانی با بخار شیمیایی مواد آلی فلزی (MOCVD) امکان پذیر است.
● وسعت فناوری نانو الکترونیک:
در فناوری نانو الکترونیک فرایندهایی سطح زیر لایه Si از جمله سوزش توسط فناوری پلاسما و باریکه یونی صورت می گیرد. این گونه مدارهای مجتمع با ویژگی های منحصر به فرد خود در مقیاس نانومتری کاربردهای متنوعی از سیستم های مزوسکوپیک دارند. بعضی از این کاربردها عبارت اند از:
▪ ساخت نقطه ها و سیستم های کوانتومی تونل زنی در دیودهای تشدید کننده مثل Si و Gi
▪ طراحی و ساخت تقویت کننده های لیزری مثل InGap
▪ طراحی و ساخت میکرو احساسگرها و ماشین های میکرونی برای کاربردهای خاص
به دلیل اهمیت فناوری نانو الکترونیک در سه سال گذشته چندین کارگاه عملی در زمینه های مختلف فیزیک و فناوری نانو الکتریک برگزار شده است. با ادامه رشد و گسترش این فناوری پیشرفته ، در آینده شاهد تحول عظیمی در زمینه های ارتباطات خواهیم بود .

 دانلود پاورپوینت برای دانش اموزان دبیرستانی

 

 

دانلود پاورپوینت از نور وباز تاب نور 

   http://www.uplooder.net/cgi-bin/dl.cgi?key=7c46fe68c99ebb2e91572e0a060836c6 

دانلود پاور پوینت طنز  

 

 

 

 http://www.uplooder.net/cgi-bin/dl.cgi?key=/Photo  

 

http://www.uplooder.net/cgi-bin/dl.cgi?key=c4ef19271b9e539ce7b573eed16e6aec 

 

دانلود پاورپوینت الکتریسیته 

 http://www.uplooder.net/cgi-bin/dl.cgi?key=f5a2eb707caf59c85be9e4202e7d89ee 

 

http://www.uplooder.net/cgi-bin/dl.cgi?key=30923e7cdfcbb212bfdd3aa77df004c0  

 

 http://www.uplooder.net/cgi-bin/dl.cgi?key=d8503e897f7876db23f2a98fa35c059a 

 

http://www.uplooder.net/cgi-bin/dl.cgi?key=d38f9835a659ed6f0d5d2b672389f9d6

 

دانلود پاورپوینت درمورد خازن.... 

 

http://www.uplooder.net/cgi-bin/dl.cgi?key=6ecad2b84053ed9d6b280c29fd6ebdda 

 

دانلودپاورپوینتدر مورد اهن ربا 

 

 http://www.uplooder.net/cgi-bin/dl.cgi?key=196e9fc7b74340ebd03cbab618b3225e 

  

 دانلود مطالبی در مورد تر موکوپل وانواع آن 

  

http://www.uplooder.net/cgi-bin/dl.cgi?key=09b08630566909ef7a512e4dc7b44b5b

امیدوارم از این لینک دانلود استفاده  کافی رو ببرید 

 

نویسنده :دانش آموز نجمه گنجی وبا همکاری فاطمه احمدی

ستاره ها

یه مطلب جدید



قدر و روشنایی




اولین مشخصه ای که ما می توانیم از ستاره ها تشخیص دهیم، میزان روشنایی آنهاست. بنا بر این تعیین معیاری برای اندازه گیری این مشخصه، یعنی روشنایی، بسیار مهم است. اولین معیار را یک دانشمند یونانی ، ابرخس (هیپاریخوس)، پیشنهاد داد، او پیش نهاد کرد که روشن ترین ستاره های آسمان شب را قدر اول بنامیم و کم نور ترین آنها را قدر ششم و ما بقی بر اساس روشنایی شان عددی بین یک تا شش می گیریند. این معیار به معیار «قدر» معروف است. از دو هزار سال پیش تا کنون این معیار پیشرفت کرده و روش های سنجش و تعریف اش بسیار دقیق تر و کار آمد تر شده است.

بیاید برای دقیق تر کردن مفهوم قدر به منشا آن بپردازیم: نور!

نور چیست؟ نور یک موج الکترومغناطیسی است که با خود انرژی حمل می کند. در واقع میزان قدرت یک پرتوی نور با انرژی اش سنجیده می شود. حالا می توان روشنایی که از یک جسم که به ما می رسد را تعریف کرد، به بیان نه چندان دقیق، روشنایی یعنی میزان انرژیی که از طریق امواج نور مرئی به چشم ما می رسد. به طور دقیق تر فرض کنید یک صفحه ی سیاه داریم به مساحت یک متر مربع که انرژی امواج نور را کاملا جذب می کند، اگر این صفحه را طوری به سمت امواج نوری بگیریم که امواج نوری به طور عمود به این صفحه بتابند، به میزان انرژیی که در یک ثانیه توسط این صفحه جذب می شود ،روشنایی می گویند. به طور خلاصه میزان انرژیی که در واحد زمان به واحد مساحت می رسد روشنایی است و در فیزیک واحد آن وات بر متر مربع (ژول بر ثانیه بر متر مربع) قرار داد شده.


نور سفید از امواج الکترومغناطیسی با طول موجهای متفاوت تشکیل شده،
هر کدام از طول موجها انرژی خاص خود را دارد و در مجموع نور سفید حامل انرژی خواهد بود:




برای مقایسه روشنایی خورشید از زمین حدود 1360 وات بر متر مربع است. روشنایی یک لامپ 100 وات رشته ای از فاصله ی 2 متری چیزی حدود یک دهم وات بر متر مربع است، روشنایی ماه کامل حدود 3 هزارم وات بر متر مربع است، زهره چیزی از مرتبه ی یک میلیون ام وات بر متر مربع و کم نور ترین ستاره ای که می توان با چشم غیر مسلح در آسمان بسیار تاریک تشخیص داد چیزی حدود یک صد میلیاردم (ده به توان منفی یازده ) وات بر متر مربع است.

این که چشم انسان قادر به تشخیص چنین بازه ی بزرگی از روشنایی است، باعث یک رفتار عجیب در تشخیص روشنایی می شود که به رفتار لگاریتمی مشهور است (در مورد شدت صوت، گوش انسان هم چنین رفتاری دارد)، یعنی چشم انسان به جای این که مثلا افزایش یک دهم وات بر متر مربع روشنایی را تشخیص دهد، دو برابر شدن یا نصف شدن آن را تشخیص می دهد. مثلا وقتی روشنایی جسمی 10 وات بر متر مربع است، اگر روشنایی اش یک دهم وات بر متر مربع تغییر کند، شخص نمی تواند تشخیص دهد اما ستاره ای که روشنایی اش یک ده هزارم وات بر متر مربع است، اگر پنج صد هزارم وات بر متر مربع بر روشنایی اش افزوده شود، چشم انسان به راحتی میتواند این تغییر روشنایی را تشخیص دهد.

در واقع چشم انسان به تغییر درصد روشنایی حساس است، کمترین درصد تغییری که چشم انسان به آن حساس است حدودا 10 درصد است، یعنی یک تغییر ده درصدی و بیشتر در روشنایی از دید چشم انسان قابل تشخیص است.

به خاطر این عملکرد خاص چشم انسان در تشخیص روشنایی، ذکر خود مقدار روشنایی بر حسب وات بر متر مربع چندان کار جالبی نیست، علاوه بر دقت پایین، حسی هم که القا می کند چندان صحیح نیست، مثلا انتظار داریم جسمی که صد میلیون برابر از خورشید کم نورتر باشد به سختی دیده شود در حالی که چنین روشنایی عملا برای یک جسم زیاد است و ستاره ای با این روشنایی در آسمان روز هم دیده می شود. پس معیار بهتر چیست؟ این جاست که به مفهوم قدر باز میگردیم اما این بار کمی دقیق تر:

در معیار قدری که ابرخس تعیین کرد، کم نورترین ستاره قدر شش بود و پر نورترین ستاره قدر یک، حالا باید قدر را به وسیله ی روشنایی تعریف کنیم و همزمان سعی کنیم خیلی به معیار ابر خس دست نزنیم! بنا بر این شروع به تعریف می کنیم:

از ترکیب تجربه و رصد با معیار ابرخس می دانیم تقریبا پرنورترین ستاره از قدر یک صد برابر روشنتر از کمنورترین ستاره از قدر 6 است، پس در اولین قدم می دانیم صد برابر روشنتر بودن موجب می شود عدد قدر، حدودا پنج قدر کاهش یابد، مثلا ستاره ای A که صد برابر روشنتر از B است، 5 قدر روشنتر است (در واقع این گونه تعریف می کنیم تا استفاده از این معیار ساده باشد)، یعنی اگر قدر B چهار باشد، قدر A منفی یک است. اگر A ده بار روشنتر از B باشد روشنایی اش 2.5 قدر کمتر است یعنی اگر B از قدر 3.5 باشد قدر A، یک است. این معیار همین گونه ادامه میابد، 1000 برابر روشنتر ، یعنی 7.5 قدر اختلاف و .... (هر ده برابر شدن روشنایی معادل 2.5 قدر است)

رابطه ی روشنایی و قدر از فرمول زیر معلوم می شود، b1و m1 روشنایی و قدر ستاره ی یک و b2و m2 روشنایی و قدر ستاره ی دو است:



پس قدر یک معیار است که با چند برابر شدن تغییر می کند و مقدار عددی اش با افزایش روشنایی کم می شود. فعلا قدری که ما تعریف کرده ایم، یک معیار نسبی است، یعنی اکنون بلدیم اختلاف قدر دو ستاره را با نسبت روشنایی شان بسنجیم و برای به دست آوردن قدر ستاره ی دوم باید قدر اولی را بدانیم مثلا اگر B ده برابر کم نورتر از A باشد (2.5 قدر اختلاف) برای این که به دست بیاوریم قدر ستاره ی B 4.6 است باید بدانیم که قدر A 2.1 است. برای این که از این نسبی بودن پرهیز کنیم و مردمان در همه جا یک معیار جهانی برای قدر داشته باشند، قدر یک ستاره را مرجع می گیریم و قدر بقیه ی ستاره ها را نسبت به آن می سنجیم، واضح است که اختلاف قدر خود ستاره ی مرجع با خودش صفر است! پس قدر ستاره ی مرجع را صفر می گیریم و اختلاف قدر ستاره ها را با ستاره ی مرجع می سنجیم و به عنوان عدد قدر اعلام می کنیم.

طبق توافق جهانی، ستاره ی آلفا-چنگ یا همان نسر واقع (در منابع لاتین: Vega ) ستاره ی مرجع فرض شده که پرنور ترین ستاره ی مثلث تابستانی است. پس ستاره ای از قدر 5، صد برابر کم نورتر از نسر واقع است. با این معیار پر نور ترین ستاره ی آسمان ، شباهنگ، قدر اش 1.7- است و قدر کم نور ترین ستاره که می توان با چشم غیر مسلح دید حدودا 6.5 است، قدر زهره در پر نورترین حالت 4.8- است و قدر خورشید از زمین 26.7-، همچنین قدر ماه کامل 12- است.

ستاره ی نسر واقع


امیدوارم خوشتون بیاد

جهان موازی ثابت شد

فیزیکدانان کوانتمی دانشگاه کالیفرنیا کشف عجیبی کرده اند که به گونه ای نشان می دهد جسمی که در مقابل یک فرد قرار گرفته و دیده می شود می تواند به صورت همزمان در جهانی موازی نیز وجود داشته باشد.




این کشف به واسطه ذره ای کوچک و فلزی انجام گرفته است ، براده ای به قطر یک تار مو ، جسمی که بسیار ریز است اما در عین حال می توان آن را با چشم غیر مسلح نیز مشاهده کرد.

دانشمندان این ذره را در کاسه ای مخروطی و تاریک سرد کرده و تمامی هوای اطراف آن را به منظور حذف ارتعاش خارج کردند. سپس محققان ذره را مانند یک دیاپازون حرکت داده و مشاهده کردند ذره در زمانی واحد حرکت کرده و متوقف می شود.

 

چگونه این پدیده را درک کنیم؟

برای درک این پدیده که کاملا غیرممکن به نظر می رسد ، باید بسیار بسیار کوچک اندیشید حتی کوچکتر از اتمها، الکترونهایی که به دور هسته اتم در گردشند ، در آن واحد در حالت های چند گانه حرکت می کنند که ثابت کردن آنها تقریبا غیر ممکن است. به بیان ساده تر می توان گفت زمانی که فردی در شهر اکلاهاما به دیدن مادر خود می رود در جهان موازی که ذرات اتمی وی در آن حضور دارند همان فرد در خانه مشغول تماشای تلویزیون است.

به گفته دانشمندان شاید این پدیده کاملا غیر واقعی به نظر آید اما بر پایه علم حقیقی رخ می دهد. بر اساس یکی از نظریه های فیزیکی زمانی که پدیده ای در یک حالت مشاهده می شود این پدیده جهان را به دو بخش تقسیم می کند. نظریه چند حالتی بر این پایه استوار است که جهان فعلی طی مشاهده انسان متوقف شده و انسان تنها یکی از واقعیات در حال وقوع را مشاهده می کند. برای مثال می تواند توپ فوتبال را ببیند که در هوا در پرواز است، اما شاید در جهان موازی این توپ در همان لحظه سقوط کرده باشد و یا شاید اصلا فردی در آن لحظه مشغول بازی فوتبال نباشد.

بسیاری از فیزیکدانان بزرگ پایه های علمی جهان چند حالتی را حتی اگر نتوان آن را به اثبات رساند قبول دارند. «شان کرول» از موسسه تکنولوژی کالیفرنیا یکی از این فیزیکدانان بوده و معتقد است تا زمانی که نتوان تمدنهای فوق پیشرفته بیگانه را تصور کرد که پی به واقعیت این نظریه برده اند، انسانها تحت تاثیر امکان وجود جهانهای دیگر قرار نخواهند گرفت. وی در عین حال معتقد است هرگز فردی قادر به ابداع دستگاهی نخواهد بود که با استفاده از آن بتوان میان این جهانها ارتباط برقرار کرد.

درک واقعیت جهان موازی بستگی شدیدی به درک انسان از زمان دارد. به گفته «کرول» ما زمان را به صورت واقعی احساس نمی کنیم، تنها شاهد گذشت آن هستیم. برای مثال گذشت زمان در هنگام یک مسابقه هیجان انگیز بسیار سریع و در سر کلاس یک درس کسل کننده کاملا کند است. یا هنگامی که فردی تلاش دارد با تاخیر در دفتر کارش حاضر نشود، دقایق برای وی با سرعتی باور نکردنی می گذرند اما چند دقیقه باقی مانده از ساعت کار به راحتی با چندین ساعت برابری می کنند.

بازگشت به آینده

«فرد آلن ولف» از دانشمندان فیزیک کوانتم نیز معتقد است زمان به شکل یک خیابان یک طرفه به نظر می آید که از گذشته به سوی حال در حرکت است اما با در نظر گرفتن نظریه های قابل ملاحظه ای که در سطح کوانتمی ارائه شده اند، ذرات در آن واحد به سمت عقب و جلو در حرکتند. در صورتی که بتوانیم از بخش «جلو و عقب رفتن در آن واحد» صرف نظر کنیم، شانس درک بخشی از فیزیک را از خود گرفته ایم.

به گفته «ولف» زمان در ماشین های کوانتمی به صورت مستقیم حرکت نمی کند بلکه حرکتی زیگزاگ داشته و به همین دلیل وی معتقد است امکان ساختن ماشینی که بتواند زمان را منحرف کند ، وجود دارد.

به گفته «ریچارد گات» فیزیکدان دانشگاه پرینستون «سرگئی کریکالو» فضانورد روسی که در 6 ماموریت فضایی حضور داشته است نسبت به بقیه انسانهای روی زمین 1.48 ثانیه جوانتر است زیرا وی در سرعتی بسیار بالا در مدار حرکت کرده است و کم سن تر بودن نسبت به بقیه به معنی جهش به آینده و تجربه نکردن زمان حال مشابه با دیگران است. به گفته وی از جهتی می توان گفت این فضانورد به سوی آینده سفر کرده و دوباره بازگشته است.

«گات» می گوید نیوتن باور داشت زمان پدیده ای جهانی است و تمامی ساعتهای جهان به صورت یکسان حرکت می کنند. اکنون با توجه به نظریه نسبیت خصوصی اینشتین می توان گفت سفر به آینده امکان پذیر است. با در نظر گرفتن نظریه گرانش اینشتین ، قوانین فیزیک از منظری که امروز آنها را درک می کنیم نشان می دهند حتی سفر در زمان به سوی گذشته نیز امکانپذیر است اما برای مشاهده امکان این سفر باید قوانین جدید فیزیکی در سطح کوانتمی فراگرفته شوند.

درک این قوانین نیز با استفاده از ذره ای فلزی و بسیار کوچک و کاسه ای مخروطی شکل آغاز شده است. در واقع فیزیکدانان دانشگاه کالیفرنیا با ابداع خود مقیاس ماشین های کوانتمی را به ابعاد بزرگتری تغییر دادند.

بر اساس گزارش فاکس نیوز ، مسئله بعدی فراگرفتن چگونگی کنترل ماشین های کوانتمی و استفاده از آنها برای اجسام بزرگتر است. در این صورت شاید بتوان با دستکاری تنها چند الکترون کوچک به جهان موازی دست پیدا کرد.

دور نمیشوند بلکه نزدیک میشوند

الف- از کاغذ روزنامه نواری به طول 15 × 55 سانتیمتر بریده و از وسط آنرا خم کنید


ب- بعد روی یک بطری بیندازید


ج-از وسط دو لبه‌ی کاغذ و زیر بطری فوت کنید


لبه‌ها به جای دور شدن، به هم نزدیک می شوند.            وبعد


الف-دو صفحه کاغذ با ابعاد 15×30 سانتیمتر بریده و به فاصله 10 سانتیمتر از هم بگیرید


ب-از وسط آنها بدمید

باز مشاهده خواهید کرد که صفحات کاغذ به هم نزدیک می شوند.



  الف و ب- نظریه برنولی Bernoulli چنین است:



جریان سریع یک گاز یا مایع از فشار اطراف خود می‌کاهد و اگر جریان خیلی سریع باشد ، فشار بیشتر پایین خواهد آمد.



جریان هوائی که در اثر فوت شما تولید می‌شود باعث پایین آمدن فشار هوا در بین لایه های کاغذ می‌شود و فشار خارج ورقه های کاغذ را به هم نزدیک می‌کند.